Tone numbers of the Major scale

Tone numbers of the major scale equate to how chords are constructed.
1 = The ROOT or first note of the scale. That note is never played flat or sharp, but all the other tones may be used in their natural, flat, or sharp position to construct various chords.

The easy example here is that the C major chord is composed of the Root, third and fifth tones of the C Major scale.

The Third tone of the scale determines whether a chord is Major or minor. If the Third is flatted, the chord is always a minor chord of some type.

Dale Mathis Slow \& Easy Accordion Lessons - Chord Theory

Major chord in ROOT position

Formula for creating any Major Chord in the Root position.

1 Play Name of chord (this example, play a C) equals ROOT of chord (also called Root Position)
2 The "third" of the chord is UP 4 (half) steps from root (c to e is called a major $3^{\text {rd }}$ interval)
3 The "fifth" of the chord is UP 3 (half) steps from the third (e to g is called a minor $\mathbf{3}^{\text {rd }}$ interval) Counting (half) steps:

A (half) step is the distance from one note to the VERY next, up or down , black or white.
To find the distance from C to E (4 half steps) Do not count the starting note (C) but:
(starting on C) C\#, D, D\#, E = 4 (half) steps
(starting on E) F, F\#, G = 3 (half) steps

minor chord in ROOT position

Formula for creating any minor Chord in the Root position.

1 Play Name of chord (this example, play a C) equals ROOT of chord (also called Root Position)
2 The "third" of the chord is UP 3 (half) steps from root (\mathbf{c} to e flat is called a minor $\mathbf{3}^{\text {rd }}$ interval)
3 The "fifth" of the chord is UP 4 (half) steps from the third (e flat to g is called a major $\mathbf{3}^{\text {rd }}$ interval) Counting (half) steps:

A (half) step is the distance from one note to the VERY next, up or down , black or white.
To find the distance from C to E flat (3 half steps) Do not count the starting note (C) but:
(starting on C) C\#, D, D\# (Eb) = 3 (half) steps
(starting on Eb or D\#) E, F, F\#, G = 4 (half) steps

diminished chord in ROOT position

Formula for creating any diminished Chord in the Root position.
1 Play Name of chord (this example, play a C) equals ROOT of chord (also called Root Position)
2 The "third" of the chord is UP 3 (half) steps from root (\mathbf{c} to e flat is called a minor $3^{\text {rd }}$ interval)
3 The "fifth" of the chord is UP 3 (half) steps from the third (e flat to \mathbf{g} flat is called a minor $\mathbf{3}^{\text {rd }}$ interval) Counting (half) steps:

A (half) step is the distance from one note to the VERY next, up or down , black or white.
To find the distance from C to E flat (3 half steps) Do not count the starting note (C) but:
(starting on C) C\#, D, D\# (Eb) = 3 (half) steps
(starting Eb or D\#) E, F, F\# (or Gb) $=3$ (half) steps

Augmented chord in ROOT position

Formula for creating any Augmented Chord in the Root position.
1 Play Name of chord (this example, play a C) equals ROOT of chord (also called Root Position)
2 The "third" of the chord is UP 4 (half) steps from root (c to e called a major $3^{\text {rd }}$ interval)
3 The "fifth" of the chord is UP 4 (half) steps from the third (e to g sharp is called a major $\mathbf{3}^{\text {rd }}$ interval)

Counting (half) steps:

A (half) step is the distance from one note to the VERY next, up or down , black or white.
To find the distance from C to E (4 half steps) Do not count the starting note (C) but:
(starting on C) C\#, D, D\#, E = 4 (half) steps
(starting on E) F, F\#, G, G\# = 4 (half) steps

$7^{\text {th }}$ chord in ROOT position

Formula for creating any $7^{\text {th }}$ Chord in the Root position.
1 Play Name of chord (this example, play a C) equals ROOT of chord (also called Root Position)
2 The "third" of the chord is UP 4 (half) steps from root (c to e called a major $3^{\text {rd }}$ interval)
3 The "fifth" of the chord is UP 3 (half) steps from the third (e to g is called a minor $3^{\text {rd }}$ interval)
4 The "seventh" of the chord is UP $\mathbf{3}$ (half) steps from the fifth (\mathbf{g} to $\mathbf{B b}$ is a minor $3^{\text {rd }}$ interval)

Counting (half) steps:

A (half) step is the distance from one note to the VERY next, up or down , black or white.
To find the distance from C to E (4 half steps) Do not count the starting note (C) but:

(starting on C) C\#, D, D\#, E = 4 (half) steps

(starting on E) F, F\#, G = 3 (half) steps
(starting on G) G\#, A, A\# (or Bb) = $\mathbf{3}$ (half) steps

Major $7^{\text {th }}$ chord in ROOT position

Formula for creating any Major $7^{\text {th }}$ Chord in the Root position.
1 Play Name of chord (this example, play a C) equals ROOT of chord (also called Root Position)
2 The "third" of the chord is UP 4 (half) steps from root (c to e called a major $3^{\text {rd }}$ interval)
3 The "fifth" of the chord is UP 3 (half) steps from the third (e to g is called a minor $\mathbf{3}^{\text {rd }}$ interval)
4 The "seventh" of the chord is UP 4 (half) steps from the fifth (g to B is a major $3^{\text {rd }}$ interval)

Counting (half) steps:

A (half) step is the distance from one note to the VERY next, up or down , black or white.
To find the distance from C to E (4 half steps) Do not count the starting note (C) but:
(starting on C) C\#, D, D\#, E = 4 (half) steps

(starting on E) F, F\#, G = 3 (half) steps

(starting on G) G\#, A, A\#, B = 4 (half) steps

minor $7^{\text {th }}$ chord in ROOT position

Formula for creating any minor $7^{\text {th }}$ Chord in the Root position.
1 Play Name of chord (this example, play a C) equals ROOT of chord (also called Root Position)
2 The "third" of the chord is UP 3 (half) steps from root (c to e called a minor $3^{\text {rd }}$ interval)
3 The "fifth" of the chord is UP 4 (half) steps from the third (e to g is called a major $\mathbf{3}^{\text {rd }}$ interval)
4 The "seventh" of the chord is UP 3 (half) steps from the fifth (\mathbf{g} to Bb is a minor $\mathbf{3}^{\text {rd }}$ interval) Counting (half) steps:

A (half) step is the distance from one note to the VERY next, up or down , black or white.
To find the distance from C to E (4 half steps) Do not count the starting note (C) but:
(starting on C) C\#, D, D\# or Eb = 3 (half) steps
(starting on Eb) E, F, F\#, G = 4 (half) steps
(starting on G) G\#, A, A\# or Bb=3 (half) steps

Full diminished chord in ROOT position

Formula for creating any Full Diminished Chord in the Root position.
1 Play Name of chord (this example, play a C) equals ROOT of chord (also called Root Position)
2 The "third" of the chord is UP 3 (half) steps from root (c to e called a minor $3^{\text {rd }}$ interval)

3 The "fifth" of the chord is UP 3 (half) steps from the third (e flat to \mathbf{g} flat is a minor $3^{\text {rd }}$ interval)
4 The "seventh" of the chord is UP 3 (half) steps from the fifth (Gb to A is a minor $3^{\text {rd }}$ interval)
Counting (half) steps:
A (half) step is the distance from one note to the VERY next, up or down , black or white.
To find the distance from C to E (4 half steps) Do not count the starting note (C) but:
(starting on C) C\#, D, D\# or Eb = 3 (half) steps
(starting on Eb) E, F, F\# or Gb = 3 (half) steps
(starting on Gb) G, G\#, A = $\mathbf{3}$ (half) steps
This chord is stacked minor thirds, so it could be called Cdim., Eb dim, Gb dim, or A dim.

Chord Inversions for a C chord

Any combination of notes: $\mathrm{C}, \mathrm{E}, \mathrm{G}=\mathrm{a}$ C chord

Root position = name of chord is lowest note

First inversion $=$ arranged $3^{\text {rd }}, 5^{\text {th }}$, Root

Second inversion $=$ arranged $5^{\text {th }}$, Root, $3^{\text {rd }}$

